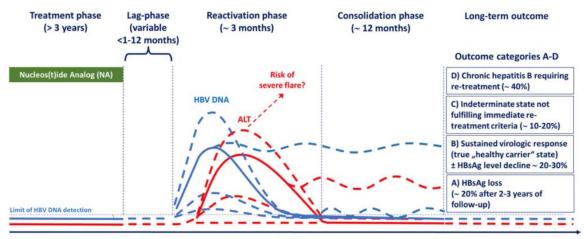


RHU « CirB-RNA » ANR-17-RHUS-0003

International Workshop on Viral Biomarkers

Prediction of outcome after cessation of nucleos(t)ide analog therapy

Sabela Lens M.D, PhD Liver Unit, Hospital Clínic Barcelona University of Barcelona, Spain



What are the **aims** of stopping NUCs?

Pre-treatment HBeAg **positive** → **Sustained virologic response**

Pre-treatment HBeAg negative → HBsAg loss (Functional cure)

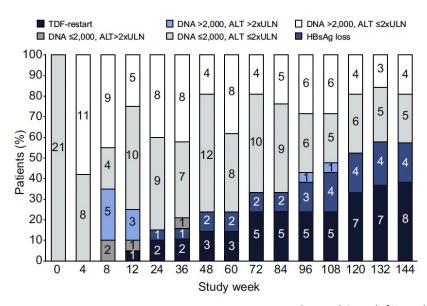
Virologic relapse: HBV-DNA > 2000 IU/ml

Clinical relapse: VR & ALT> 2 ULN

Clinical guidelines differ in NUC discontinuation recommendations

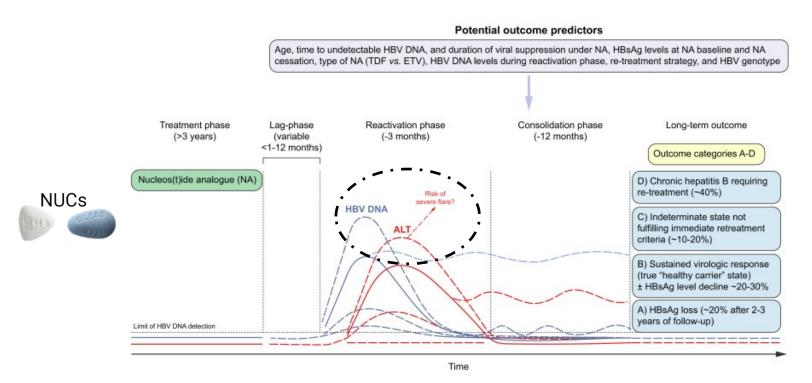
Guideline	HBeAg+	HBeAg-
EASL (2017)	HBeAg seroconversion & at least 6-12 months of consolidation therapy following virological suppression	At least 3 years of consolidation therapy following virological suppression
AASLD (2018)	HBeAg seroconversion & at least 12 months of consolidation therapy following virological suppression	Indefinite treatment unless compelling rationale
APASL (2015)	HBeAg seroconversion & at least 1-3 years of consolidation therapy following virological suppression	At least 2 years of treatment & 1 year of consolidation therapy following virological suppression (tested 3 times, 6 months apart)

Sarin S, Kumar M, Lau G, Abbas Z, Chan HLY, Chen CJ, et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol Int 2016;10:1–98.

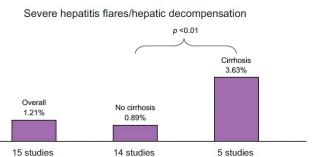

Lampertico P, Agarwal K, Berg T, Buti M, Janssen HL, Papatheodoridis G, et al. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol 2017;67:370–398.

Terrault NA, Lok AS, McMahon BJ, Chang K, Hwang JP, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018;67:1560–1599.

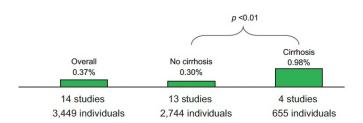
Why consider stopping NUCs in HBeAg-neg?


The rate of HBsAg loss can reach 10–20% during a relatively short follow-up period of 2–3 years whereas in the setting of continued NA therapy is only 1-2% per year.

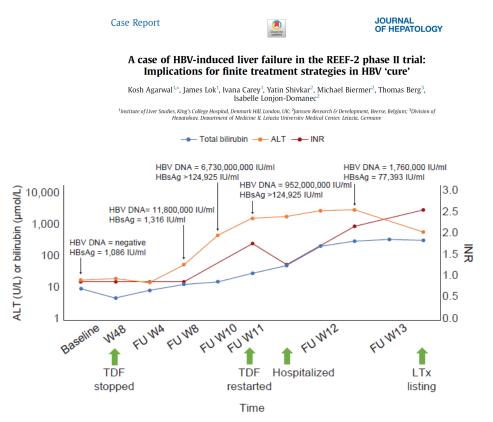
Tseng et al. J Hep Reports 2023



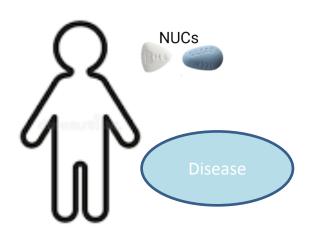
Challenges when stopping NUCs


Risks when stopping NUCs

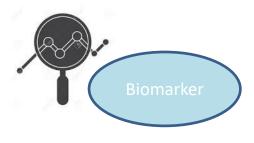
Hepatitis flare-related death/liver transplantation


3,731 individuals

4,425 individuals

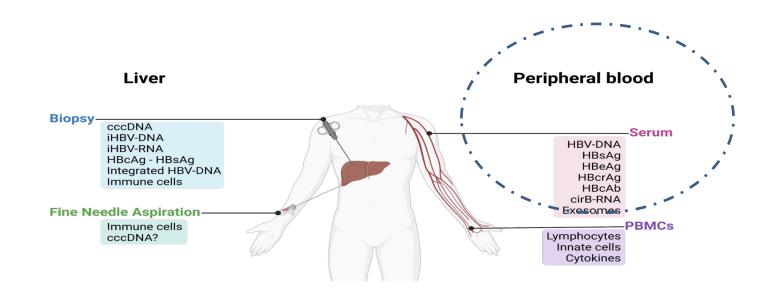


Tseng et al. JHEP Rep . 2022 Oct 28;5(1):100617.


744 individuals

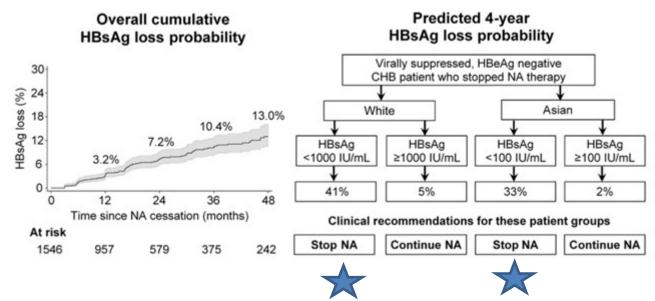
To **consider** when evaluating the **role of HBV biomarkers** to guide stopping NUC therapy:

- Pre-treatment HBeAg, HBV-DNA
- Genotype
- Ethnicity
- Treatment type / duration
- Stage of liver disease

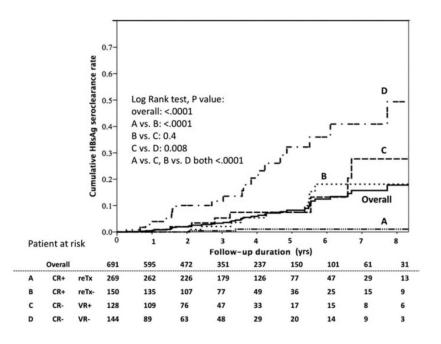


Study design:
Endpoints
& definitions

- Baseline or dynamic evaluation
- Alone or in combination
- Sensitivity
- Standardisation
- Reimbursement
- Commercial availability


- HBsAg loss
- Virologic / Clinical relapse
- · Re-treatment criteria
- Time FU

Potential biomarkers to predict outcome after NUC discontinuation

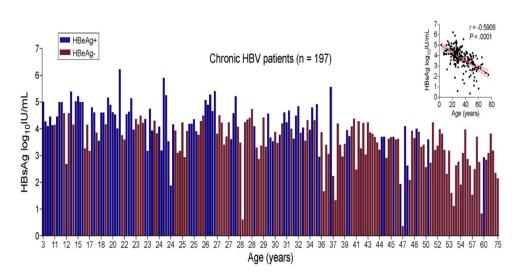

qHBsAg levels: best cut-off to predict HBsAg loss?

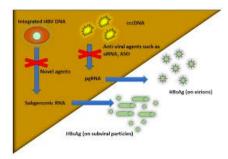
RETRACT-B Study: n=1552 patients HBeAg-negative, 87.6% Asian

qHBsAg levels: EOT, kinetics and early re-treatment

n=691 HBeAg- patients → 42 HBsAg loss 6-year cumulative incidence 13%

Cox regression analysis:

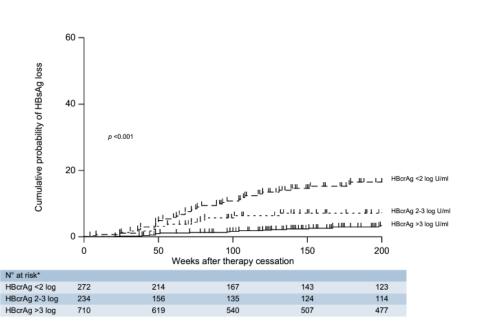

- lower EOT HBsAg level (<100 IU/mL)
- After NA stop: HBsAg reduction (>1log10), sustained response (VR-), and relapsers (CR+) not retreated

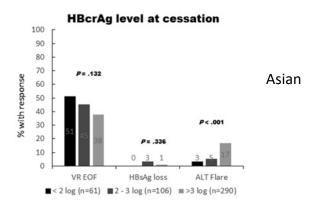

clinical relapse not treated → x7 HBsAg loss

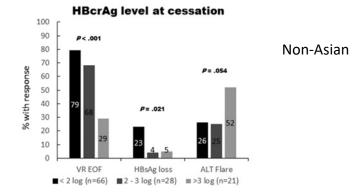
qHBsAg levels: challenges

Different qHBsAg according to HBV genotype

HBeAg-negative, age (duration of infection) and long-term NA therapy → lower **qHBsAg**

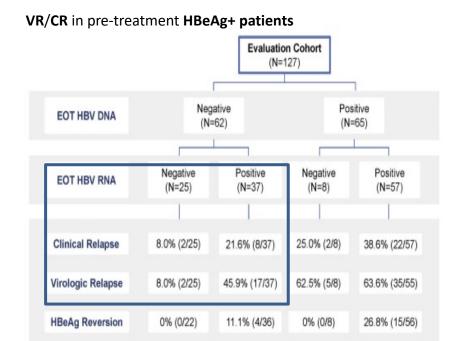





Role of HBsAg production from integrated HBV-DNA?

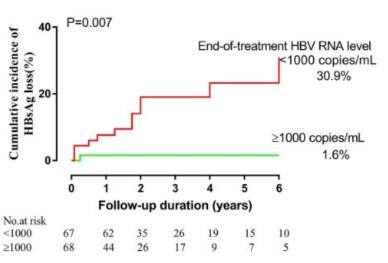
HBcrAg in VR, CR and functional cure

CREATE study, n= 1216, 291 (24%) HBeAg+


HBcrAg in VR, CR and functional cure

> cut-off vs < cut-off

Study	Time-point	FU	Cut-off	VR	CR	HBsAg loss
Kaewdech, et al. 2020	EOT	48 weeks	3 log U/mL	74% vs 44%	48% vs 8%	0% vs 6%
Huang et al. 2021	Baseline	5 years	4 log U/mL	79% vs 56%	75% vs 41%	13% vs 29%
Kuo et al. 2021	Baseline	3 years	4.7 log U/mL	82% vs 55%	72% vs 39%	8% vs 43%
Sonneveld et al. 2022	EOT	48 weeks	2-3 log U/mL	65% vs 38%	20% vs 15%	2% vs 12%

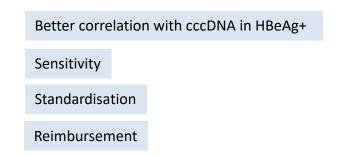

In **bold** if difference p<0.05

HBV-RNA in VR, CR and functional cure

HBsAg loss in pre-treatment HBeAg+/- patients

n=135, 70% HBeAg+, FU 6 yrs

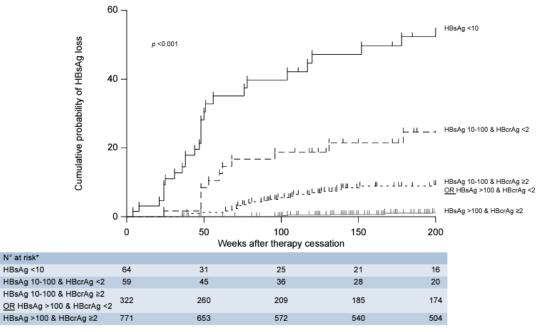
HBV-RNA in VR, CR and functional cure


> cut-off vs < cut-off

Study	Time-point	FU	Cut-off	VR	CR	HBsAg loss
Kaewdech, et al. 2020	EOT	48 weeks	2 log U/mL	72% vs 50%	43% vs 21%	0% vs 4%
Seto et al. 2020	EOT	48 weeks	1.65 log U/mL	93% vs 36%		
Xia et al. 2021	EOT	6 years	3-4.3 log U/mL		100% vs 24%	2% vs 31%
Papatheodoridi et al. 2022	EOT	48 weeks	LLD	100% vs 68%	100% vs 28%	0% vs 17%

In **bold** if difference p<0.05

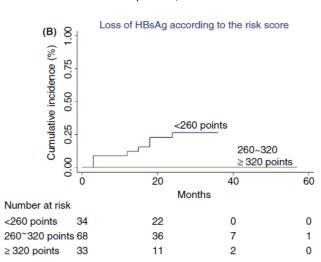
HBcrAg and HBV-RNA: challenges

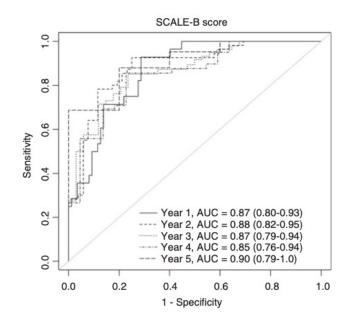

While detectable levels of HBV-RNA and HBcrAg at EOT clearly predict an unfavourable outcome, the opposite—non-detectability of these markers—is not highly predictive of HBsAg loss

Combination strategies: qHBsAg and HBcrAg

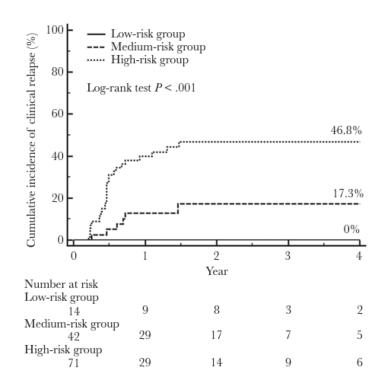
CREATE study n=1,216 patients

Non-Asian ethnicity was associated with the highest chance of HBsAg loss.


Among Asian patients, genotype C was associated with a higher chance of HBsAg loss.


Patients with HBsAg >100 IU/ml and detectable HBcrAg had a very low chance of HBsAg loss irrespective of HBV genotype

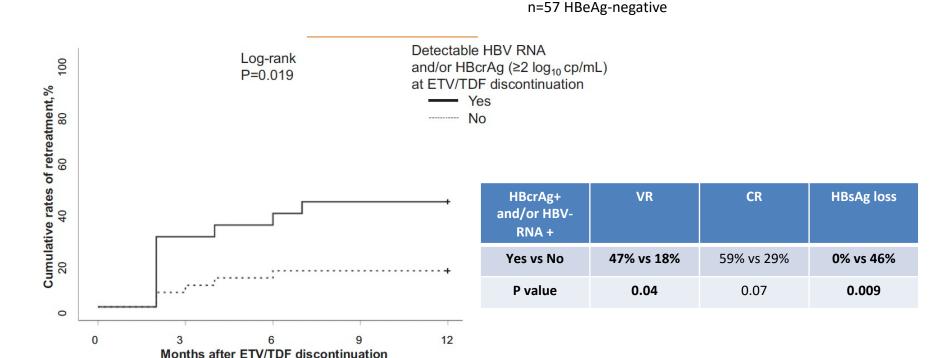
SCALE-B score cut-off for HBsAg loss


n=135 patients, FU 26 months

SCALE-B score cut-off for clinical relapse

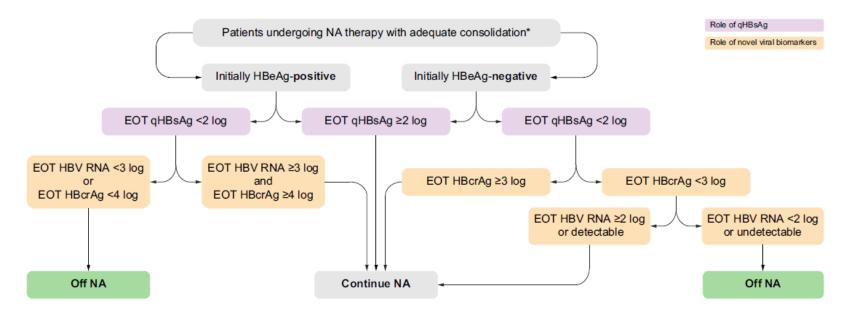
Combination strategies: HBcrAg and HBV-RNA

n=127 HBeAg+ achieving SC

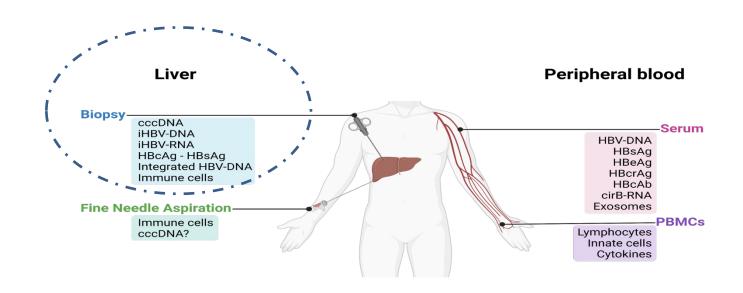

High risk: Both positive

Medium risk: HBV-RNA negative & HBcrAg > 4 log10 U/mL Or HBV-RNA positive & HBcrAg < 4 log10 U/mL

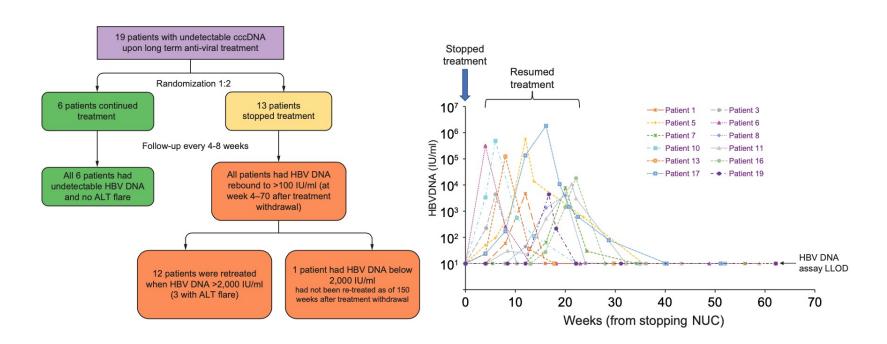
Low risk: Both negative

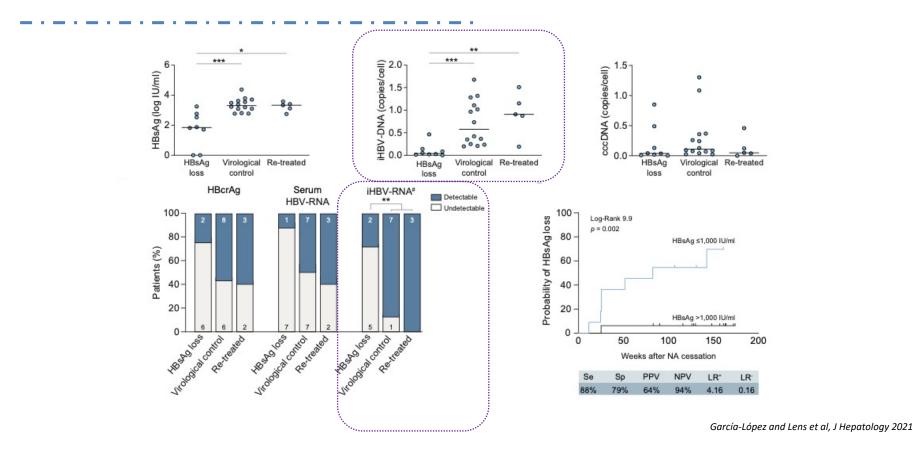

HBsAg loss was higher in the low-risk patients (16.1% [5/31] vs 1.3% [2/155], P = .002).

Combination strategies: HBcrAg and HBV-RNA



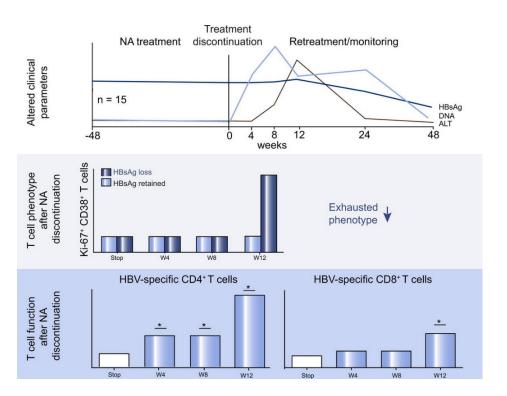
NUC discontinuation algorithm based on viral markers


Meta-analysis: 33 studies which provided data of 2986 patients undergoing treatment cessation

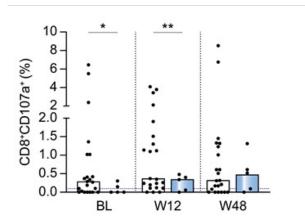

Potential biomarkers to predict outcome after NUC discontinuation

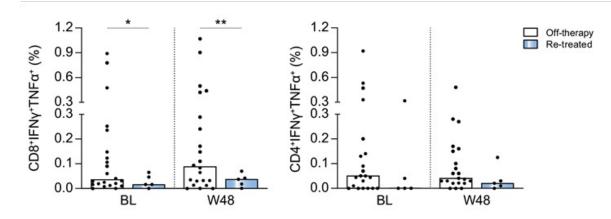
Intrahepatic viral markers: cccDNA

Intrahepatic viral markers: cccDNA, iHBV-DNA and iHBV-RNA

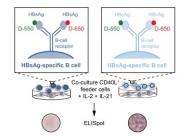


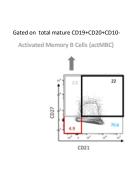
Immune biomarkers

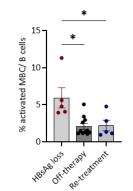

Acute-resolving HBV hepatitis

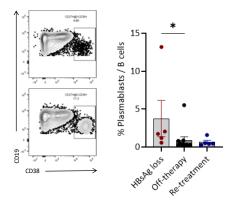

HBV chronic infection Depleted cell numbers Poor proliferation Increased apoptosis Limited production of antiviral cytokines Interferon y TNFα Interleukin 2 Cytotoxic mediators PANTANA MANANA M ↓ Viraemia Inhibitory **Activatory** Revived T cell Inhibitory Activatory Exhausted T cell

HBV-specific T cell responses


- ✓ T cells from patients with subsequent **HBsAg loss** showed a **less exhausted** phenotype.
- ✓ These T cells also expressed higher levels of activation and proliferation markers at week 12 after discontinuation of therapy




- ✓ Increased **frequency of functional HBV-specific CD8+ T cells** at baseline was associated with sustained viral control off treatment.
- ✓ The strength of HBV-specific T cell responses **did not correlate** with serum or intrahepatic virological markers

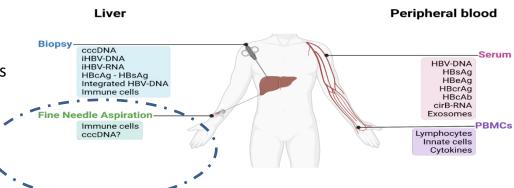

HBV-specific B cell responses



¹Burton et al. JCI 2018 ²Salimzadeh et al. JCI 2018 ³Le Bert et al. J Hepatol 2019 ⁴ Vanwolhegem J Hepatol 2021

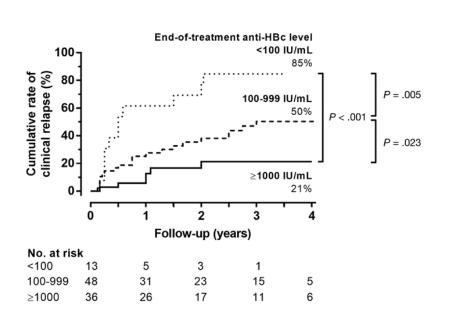
- ✓ Long-term NUC therapy and NUC discontinuation induce significant changes in **HBV-MBC frequency and**phenotype.
- ✓ HBsAg loss: ↑ activated global B cells (EOT and FU), ↑plasmablasts and recovery of B cell functionality (HBsAb production)

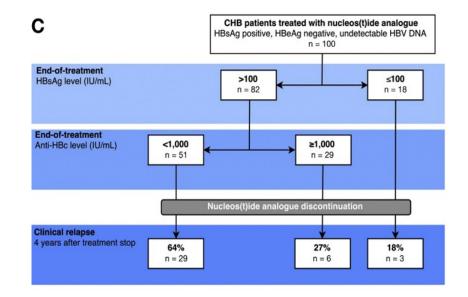
Immune biomarkers : challenges


Need of specialized laboratory

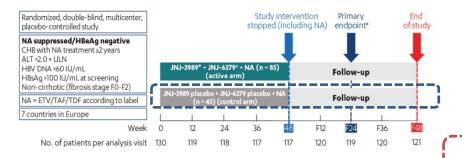
• Heterogeneity of results so far

In vitro vs in vivo HBV-sp responses


• Lack of robust and reproducible assays


Periphery = Liver?

Anti-HBc levels


n=100 patients (71% HBeAg+), FU 2 years, primary endpoint clinical relapse: HBV-DNA >2000 and ALT >2ULN

Anti-HBc levels

n=41 HBeAg-neg (control arm REEF-2 study)

Table 2. Proportion of REEF-2 NA Control Arm Patients With Post-treatment Virologic Relapse and Biochemical Flare by EOT Virologic Parameters

		Virologic relapse (confirmed HBV DNA >2,000 IU/mL		Biochemical flare (ALT ≥3 × ULN)		
EOT variables/type of NA	N	Any virologic flare	Peak HBV DNA >100,000 IU/mL	Any ALT flare	Peak ALT ≥10 × ULN	
Patients with EOT data who entered follow-up, n (%)	41	27 (65.9)	11 (26.8)	16 (39.0)	10 (24.4)	
HBV RNA Detectable* TND* P value*	35 6	23 (65.7) 4 (66.7) 1.0000	9 (25.7) 2 (33.3) 0.6514	13 (37.1) 3 (50.0) 0.6624	9 (25.7) 1 (16.7) 1.0000	
HBcrAg Detectable* TND† Pvalue*	21 20	17 (81.0) 10 (50.0) 0,0516	9 (42.9) 2 (10.0) 0.0325	10 (47.6) 6 (30.0) 0,3408	9 (42.9) 1 (5.0) 0.0089	
Anti-HBc IgG <300 IU/mL ≥300 IU/mL P value*	23 18	16 (69.6) 11 (61.1) 0.7417	11 (47.8) 0 0.0008	12 (52.2) 4 (22.2) 0.0626	10 (43.5) 0 0.0021	
HBsAg <1,000 IU/mL⁵ ≥1,000 IU/mL P value‡	13 28	9 (69.2) 18 (64.3) 1.0000	6 (46.2) 5 (17.9) 0.0727	8 (61.5) 8 (28.6) 0.0835	6 (46.2) 4 (14.3) 0.0485	

Take-home messages

- Serum HBV biomarkers are useful in predicting outcomes after treatment discontinuation.
- Low quantitative HBsAg levels are currently the most reliable predictive marker: <1,000 IU/ml in the Caucasian population and <100 IU/ml in the Asian population. The dynamics of qHBsAg may also be helpful.
- Detectable levels of HBV RNA and HBcrAg at EOT mostly predict an unfavourable outcome,
 BUT the opposite is not highly predictive of HBsAg loss.
- Intrahepatic viral markers do not seem to improve predictive capacity of serum markers.
- The effect of antiviral treatment on **HBV-specific immune** response may also contribute to define the population who would benefit the most from finite therapy but this requires broader and specialized evaluation.

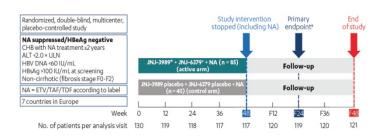
Thank you for your attention!

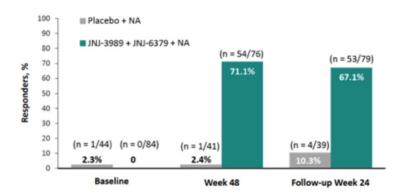
Viral Hepatitis Unit, Hospital Clínic Barcelona

Follow us on Twitter @SaSi_Lens and @BCVirHep

Clinical trials including NUCs withdrawal

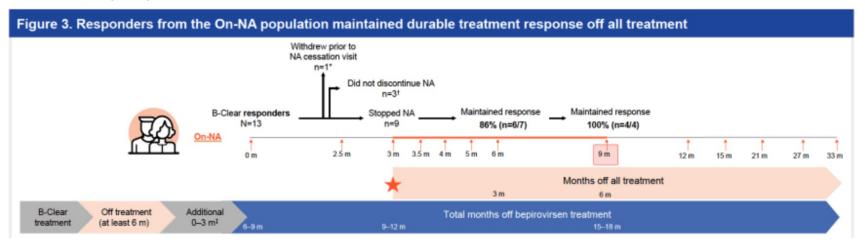
What effect of new therapies would I expect in a HBeAg-neg CHB patient under long term NA therapy?

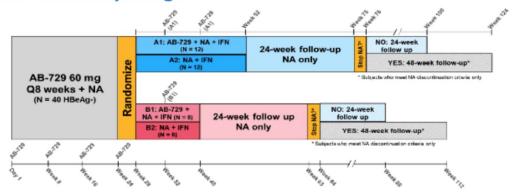

	HBsAg	HBcrAg	HBV-RNA
CAMS	\	\	V
siRNA	$\downarrow \downarrow$	$\downarrow \downarrow$	$\downarrow \downarrow$
HBsAg secretion inhibitors	$\downarrow\downarrow\downarrow$	V	\
Entry inhibitors	\	\downarrow	\downarrow


Personal

REEF-2: Primary Endpoint and Proportion of Patients With HBsAg <100 IU/mL

No patients achieved the primary endpoint of HBsAg seroclearance* at Follow-up Week 24 without restarting NA treatment, in either treatment arm


Proportion of patients with HBsAg <100 IU/mL



On-NA population:

- 69% (9/13) participants ceased NA as per protocol.
- Of the 7 participants who ceased NA and had ≥6 months of follow-up within B-Sure, 86% (6/7) maintained response 3 months post NA cessation (Figure 3).
- Of the 4 participants who ceased NA and had ≥9 months of follow-up within B-Sure, 100% (4/4) maintained response 6 months post NA
 cessation; no participants restarted NAs.

AB-729-201 Study Design

NUC discontinuation if HBsAg <100

Yuen et al. EASL 2023

ANRS HB07 IP-Cure-B Proof of Concept (PoC) Clinical Trial. Educating the Liver Immune Environment Through TLR8 Stimulation Followed by NUC Discontinuation