





Inserm

# Effets Secondaires Hépatiques des Inhibiteurs de Check-Point en Cancérologie

**Professeur Didier Samuel** 

Dr Eleonora De Martin

Centre Hépato-Biliaire, Hôpital Paul Brousse

UMR-S 1193, FHU Hepatinov,

Université Paris-saclay

Villejuif - France

# Potential Mechanism of Action of Anti-PD1 and Anti-CTLA4



### Anti-PD-1 or Anti-PD-L1 Blockade

Genetic ablation of CTLA4 result in massive lympho proliferation and early death in mice



Genetic ablation of Pdcd1 (encoding PD1) leads to autoimmune phenotypes in mice

### Khan, Sem in Cancer Biology in press



# Spectrum of Toxicity of Immune Checkpoint Inhibitors

### Champiat, Ann of Oncol 2016

### **Possible Mechanisms Underlying irAEs**



Postow, NEJM 2018

### **IrAEs according to Organ Categories**



**Fig. 1. Distribution of irAEs for organ categories according to treatment in the main clinical trials of ICIs.** Patients were treated with anti-PD-1 + anti-CTLA-4,<sup>4,33,36</sup> anti-CTLA-4<sup>4,33,104,124</sup> and anti-PD-1.<sup>33,34,124</sup> The values quoted

#### De Martin J Hep Reports 2021

### **Prevalence of Hepatic IrAEs**

| Event         | Nivolumab +<br>N=3 | Ipilimumab<br>313 | Nivolı<br>N=3 | umab<br>313 | Ipilim<br>N= | iumab<br>311 |
|---------------|--------------------|-------------------|---------------|-------------|--------------|--------------|
|               | Any Grade          | Grade 3-4         | Any Grade     | Grade 3-4   | Any Grade    | Grade 3-4    |
| Rash          | 93 (30)            | 10 (30)           | 72 (23)       | 1 (<1)      | 68 (22)      | 5 (2)        |
| Pruritus      | 112 (35)           | 6 (2)             | 67 (21)       | 1 (<1)      | 113 (36)     | 1 (<1)       |
| Fatigue       | 119 (38)           | 13 (4)            | 114 (36)      | 3 (1)       | 89 (29)      | 3 (1)        |
| Diarrhea      | 142 (45)           | 29 (9)            | 67 (21)       | 9 (3)       | 105 (34)     | 18 (6)       |
| Vomiting      | 48 (15)            | 7 (2)             | 22 (7)        | 1 (<1)      | 24 (8)       | 1 (<1)       |
| Increased AST | 51 (16)            | 19 (6)            | 14 (4)        | 3 (1)       | 12 (4)       | 2 (1)        |
| Increased ALT | 60 (19)            | 27 (9)            | 13 (4)        | 4 (1)       | 12 (4)       | 5 (2)        |
| Colitis       | 40 (13)            | 26 (8)            | 7 (2)         | 3 (1)       | 35 (11)      | 24 (8)       |

Wolchok, NEJM 2017

# Variability and Unpredictability of Hepatic IrAEs

Characteristics of a population who developed grade ≥3 hepatitis

|                                                     | N=16           |
|-----------------------------------------------------|----------------|
| Age, years                                          | 63 [33-84]     |
| Sex, F                                              | 9 (56)         |
| Interval time immunotherapy<br>and hepatitis, weeks | 5 [1-49]       |
| AST, UI/L                                           | 399 [117-2289] |
| ALT, UI/L                                           | 416 [266-3137] |
| Total Bilirubin, μmol/L                             | 18 [6-324]     |
| GGT, UI/L                                           | 317 [39-1252]  |
| ANA ≥ 1:80                                          | 8 (50)         |
| lgG, g/L                                            | 9 [6-18]       |

Hepatitis onset even after immune checkpoint discontinuation

### **Hepatic IrAEs in Non HCC Patients**



De Martin J Hep Reports 2021

### **IrAEs in HCC Patients**



# **Anti-CTLA4 (Ipilimumab): Fibring Ring Granuloma**



Acute hepatitis with confluent centrilobular necrosis and numerous fibrin ring granulomas (HES x 100) Granulomas: epithelioid cells without giant cell, centered by a lipid vacuole surrounded by a fibrin ring (HES x 350)

Papouin, Ann Pathol 2018

### **Anti-PD1 (Nivolumab): Lobular Hepatitis**



Acute hepatitis with peri-portal inflammatory infiltration and moderate necrotico-inflammatory activity (HES x 100)

Lobular inflammatory infiltration made by histiocytes and lymphocytes (HES x 300)

Papouin, Ann Pathol 2018

### **Cholangitis due to ImmuneCheckpoint inhibitors**



Fig. 4. Liver biopsies of patients treated with anti-PD-L1 and with combination of anti-PD-1 and anti-CTLA-4. (A) Destructing cholangitis (HES ×400); (B) Granulomatous cholangitis HES ×300. CTLA-4, cytotoxic T lymphocyte-

De Martin J Hep Reports 2021

### Lesions of central venous endothélialitis with Fibrous deposits



Central Venular **with intimal fibrous deposits** and endothelialitis (lymphocytes).

PicroSirius, x200

Courtesy Dr A. Laurent-Bellue

# Lesions of central venous endothélialitis with Fibrous deposits (SOS)



Patient with Metastatic melanoma treated with Nivolumab (14 months)

Charvet Ann Oncol 2020

### It is not an « autoimmune-like » hepatitis !!!



#### Zen, Mod Pathol 2018

# **ICI-Liver Toxicity and Autoimmune Hepatitis?**

|                                | ICI-induced liver toxicity                          | Autoimmune hepatitis                                                  |           |
|--------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-----------|
| Presentation                   | Heterogeneous                                       | Heterogeneous                                                         |           |
| Gender prevalence              | None                                                | Female                                                                |           |
| Clinical symptoms              | Non-specific                                        | Non-specific                                                          |           |
|                                | Possibly asymptomatic                               |                                                                       |           |
| Biology                        |                                                     |                                                                       |           |
| AST/ALT elevation              | Present                                             | Present                                                               |           |
| GGT/ALP elevation              | Present                                             | Present at lower level than the cytolysis (look for PBC, PSC overlap) |           |
| Bilirubin elevation            | Rare                                                | Possible                                                              |           |
| Immunology                     |                                                     |                                                                       |           |
| Anti-nuclear antibodies        | Possibly positive (about 50% of patients), speckled | Positive, high titre, homogeneous pattern                             |           |
| Anti-smooth muscles antibodies | Possibly positive (non-anti-F actin)                | Positive, high titre, anti-F actin                                    |           |
| Anti-LKM 1 antibodies          | Negative                                            | Positive (AIH type II)                                                |           |
| IgG                            | Usually normal                                      | Elevated                                                              |           |
| Histology                      |                                                     |                                                                       |           |
| Plasmocytes                    | Absent or rare                                      | Frequent                                                              | De Martin |
| Lobular inflammation           | Present                                             | Present                                                               | De martin |
| Portal tract inflammation      | Present                                             | Present                                                               | Ј Нер     |
| Confluent necrosis             | Rare                                                | Present                                                               | Reports   |
| Granuloma                      | Often present in patients on anti-CTLA-4            | Absent                                                                | Reports   |
| Cholangitis                    | Present – cholangitis form                          | Rarely present (look for PBC, PSC overlap)                            | 2021      |
| Chronic hepatitis/cirrhosis    | Absent                                              | Frequently present                                                    |           |
| CD4+/CD20+                     | Rare                                                | Present                                                               |           |
| CD8+                           | Present                                             | Rare                                                                  |           |
| Therapy                        |                                                     |                                                                       |           |
| Corticosteroids                | Not always needed                                   | Needed                                                                |           |
| Long-term therapy              | No                                                  | Yes                                                                   |           |
| Corticosteroid discontinuation | Yes                                                 | Possible in selected patients                                         |           |
|                                | Risk of recurrence: rare                            | Risk of recurrence: high                                              |           |

### Common Toxicity Criteria for Adverse Events : CTCAE

Cancer Therapy Evalutation Program of the National Cancer Institute (NCI) of the National Institutes of Health

|                         |            | Mild       | Moderate   | Severe     | Life-threatening |
|-------------------------|------------|------------|------------|------------|------------------|
| Feature                 | Grade<br>0 | Grade<br>1 | Grade<br>2 | Grade<br>3 | Grade<br>4       |
| ALT                     | Normal     | >1.0-2.5   | >2.5-5.0   | >5.0-20    | >20              |
| AST                     | Normal     | >1.0-2.5   | >2.5-5.0   | >5.0-20    | >20              |
| Alkaline<br>Phosphatase | Normal     | >1.0-2.5   | >2.5-5.0   | >5.0-20    | >20              |
| GGT                     | Normal     | >1.0-2.5   | >2.5-5.0   | >5.0-20    | >20              |
| Bilirubin               | Normal     | >1.0-1.5   | >1.5-3.0   | >3.0-10    | >10              |

# **Recommendations of European Society of Medical Oncology**

| ALT/AST ULN                                                                                                                                                                                        | Steroids                                                                                          | Immunotherapy                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| <b>Grade 1</b><br>ALT/AST≤3                                                                                                                                                                        | No                                                                                                | Continue                                                       |
| <b>Grade 2</b><br>3 <alt ast≤5<="" td=""><td>0.5-1mg/Kg/day<br/>Start steroid taper over 4–6 weeks<br/>when G1</td><td>Hold<br/>Continue once resolved to ≤grade 1<br/>and off steroids</td></alt> | 0.5-1mg/Kg/day<br>Start steroid taper over 4–6 weeks<br>when G1                                   | Hold<br>Continue once resolved to ≤grade 1<br>and off steroids |
| <b>Grade 3</b><br>5 <alt ast≤20<="" td=""><td>1-2mg/Kg/day<br/>Start steroid taper over 4–6 weeks<br/>when G2</td><td>Hold; rechallenge only at consultant discretion</td></alt>                   | 1-2mg/Kg/day<br>Start steroid taper over 4–6 weeks<br>when G2                                     | Hold; rechallenge only at consultant discretion                |
| Grade 4<br>ALT/AST>20                                                                                                                                                                              | 2 mg/Kg/day<br>If no improvement in 2-3 days, add<br>additional/alternative immune<br>suppressant | Discontinue immunotherapy                                      |

### **RUCAM: Roussel-UCLAF Causality Assessment Method**

|                                                                                                                                    | R                                                | RUCAM Causality A            | ssessment                                    |                                |                               |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------|----------------------------------------------|--------------------------------|-------------------------------|--|--|--|--|
|                                                                                                                                    |                                                  |                              |                                              |                                |                               |  |  |  |  |
| Drug:                                                                                                                              | Initial ALT:                                     | Initial Alk P:               | R ratio = [ALT/UI                            | .N] ÷ [Alk P/ULN] = ÷          | =                             |  |  |  |  |
| The R ratio determines whether the injury is hepatocellular ( $R > 5.0$ ), cholestatic ( $R < 2.0$ ), or mixed ( $R = 2.0 - 5.0$ ) |                                                  |                              |                                              |                                |                               |  |  |  |  |
|                                                                                                                                    | Hepatocellular Type                              |                              | Cholestatic or Mixed T                       | ype                            | Assessment                    |  |  |  |  |
| 1. Time to onset                                                                                                                   |                                                  | I                            |                                              |                                |                               |  |  |  |  |
|                                                                                                                                    | Initial Treatment                                | Subsequent<br>Treatment      | Initial Treatment                            | Subsequent Treatment           | Score (check one only)        |  |  |  |  |
| From the beginning of the drug:     Suggestive     Compatible                                                                      | 5 – 90 days<br>< 5 or > 90 days                  | 1 – 15 days<br>> 15 days     | 5 – 90 days<br>< 5 or > 90 days              | 1 – 90 days<br>> 90 days       | □ +2<br>□ +1                  |  |  |  |  |
| <ul> <li>From cessation of the drug:</li> <li>Compatible</li> </ul>                                                                | ≤ 15 days                                        | ≤ 15 days                    | ≤ 30 days                                    | ≤ 30 days                      | □ +1                          |  |  |  |  |
| Note: If reaction begins before starting the m<br>and the RUCAM cannot be calculated.                                              | nedication or >15 days afte                      | r stopping (hepatocellular), | or >30 days after stoppin                    | (cholestatic), the injury shou | be considered unrelated       |  |  |  |  |
| 2. Course                                                                                                                          | Change in ALT between                            | peak value and ULN           | Change in Alk P (or to<br>value and ULN      | al bilirubin) between peak     | Score (check one only)        |  |  |  |  |
| After stopping the drug:                                                                                                           |                                                  |                              |                                              |                                |                               |  |  |  |  |
| Highly suggestive                                                                                                                  | Decrease ≥ 50% within 8                          | 3 days                       | Not applicable                               |                                | ☐ +3                          |  |  |  |  |
| Suggestive                                                                                                                         | Decrease ≥ 50% within 3                          | 30 days                      | Decrease ≥ 50% within 180 days               |                                | □ +2                          |  |  |  |  |
| Compatible                                                                                                                         | Not applicable                                   |                              | Decrease < 50% within                        | 180 days                       | □ +1                          |  |  |  |  |
| Inconclusive                                                                                                                       | No information or decre                          | ease ≥ 50% after 30 days     | Persistence or increase                      | or no information              | □ •                           |  |  |  |  |
| Against the role of the drug                                                                                                       | Decrease < 50% after 30<br>Recurrent increase    | days OR                      | Not applicable                               |                                | □ -2                          |  |  |  |  |
| If the drug is continued:     Inconclusive                                                                                         | All situations                                   |                              | All situations                               |                                | 0                             |  |  |  |  |
| 3. Risk Factors:                                                                                                                   | Ethanol                                          |                              | Ethanol or Pregnancy                         | (either)                       | Score<br>(check one for each) |  |  |  |  |
| <ul> <li>Alcohol or Pregnancy</li> </ul>                                                                                           | Presence<br>Absence                              |                              | Presence<br>Absence                          |                                | □ +1<br>□ 0                   |  |  |  |  |
| o Age                                                                                                                              | Age of the patient ≥ 5<br>Age of the patient < 5 | 5 years<br>5 years           | Age of the patient ≥<br>Age of the patient < | 55 years<br>55 years           | □ +1<br>□ 0                   |  |  |  |  |
|                                                                                                                                    |                                                  |                              |                                              |                                |                               |  |  |  |  |

### **Immune-Mediated Hepatitis**



De Martin, J Hepatol 2018

### **Spontaneous Improvement of Immune-mediated Hepatitis**



Spontaneous improvement: 38%

De Martin, J Hepatol 2018

### **Immune-mediated hepatitis**

| Pt | Age | Sex | Immuno<br>therapy | Time to<br>AE onset<br>(weeks) | Grade of<br>hepatitis | Steroids |                   |
|----|-----|-----|-------------------|--------------------------------|-----------------------|----------|-------------------|
| 1  | 65  | М   | Ipilimumab        | 9.3                            | 3                     | No       |                   |
| 2  | 38  | F   | Pembrolizumab     | 14.1                           | 3                     | No       | 50% S             |
| 3  | 78  | Μ   | Ipilimumab        | 10.4                           | 3                     | No       | imp<br>More frequ |
| 4  | 66  | М   | Ipilimumab        | 6.1                            | 3                     | No       |                   |
| 5  | 43  | F   | Ipilimumab        | 8.9                            | 4                     | Yes      |                   |
| 6  | 36  | Μ   | Nivolumab         | 9.4                            | 4                     | Yes      |                   |
| 7  | 46  | М   | Nivolumab         | 19.7                           | 3                     | No       |                   |
| 8  | 80  | Μ   | lpi + Nivo        | 2.9                            | 2                     | Yes      |                   |
| 9  | 45  | М   | Ipilimumab        | 13.9                           | 3                     | Yes      |                   |
| 10 | 74  | М   | Ipilimumab        | 14.7                           | 3                     | Yes      |                   |

50% Spontaneous improvement ore frequent with antiPD1

Gauci, J Hepatol 2018

# **ICI induced Cholangitis**

| Type of injury | No | Age | Sex | Disease      | Drug       | Pattern of onset | ALT/ALP<br>(at the worst ALT) | Biopsy site       |
|----------------|----|-----|-----|--------------|------------|------------------|-------------------------------|-------------------|
| irSC           | 1  | М   | 81  | NSCLC        | Pembro     | Cholestatic      | 419/1987                      | Liver & bile duct |
|                | 2  | F   | 83  | NSCLC        | Pembro     | Cholestatic      | 237/4847                      | Liver             |
|                | 3  | Μ   | 71  | NSCLC        | Nivo       | Cholestatic      | 74/1613                       | Bile duct         |
|                | 4  | Μ   | 68  | NSCLC        | Nivo       | Cholestatic      | 91/3117                       | None              |
| irHepatitis    | 1  | М   | 68  | NSCLC        | Pembro     | Hepatocellular   | 580/531                       | None              |
|                | 2  | F   | 31  | Melanoma     | Ipi + Nivo | Hepatocellular   | 1976/323                      | None              |
|                | 3  | F   | 56  | Melanoma     | Ipi + Nivo | Hepatocellular   | 1293/683                      | None              |
|                | 4  | F   | 78  | Melanoma     | Ipi + Nivo | Cholestatic      | 215/880                       | None              |
|                | 5  | Μ   | 54  | Melanoma     | Ipi + Nivo | Mixed            | 809/1446                      | None              |
|                | 6  | F   | 68  | Melanoma     | Ipi        | Mixed            | 425/589                       | None              |
|                | 7  | Μ   | 55  | Melanoma     | Ipi        | Mixed            | 236/512                       | None              |
|                | 8  | Μ   | 54  | Renal cancer | Ipi + Nivo | Hepatocellular   | 614/1096                      | None              |

Table 2 Principal characteristics of patients with immune-related sclerosing cholangitis and hepatitis

#### Takinami Invest New Drugs 2021



\* the biopsy is not recomended if viral hepatitis

#### De Martin, J Hepatol 2018

# Management of ImmuneCheckpoint inhibitors Hepatitis



De Martin J Hep Reports 2021

# Fulminant hepatitis due to immune checkpoint inhibitors

Case Report

Acute Liver Failure from Anti-PD-1 Antibody Nivolumab in a Patient with Metastatic Lung Squamous Cell Carcinoma

Sarmen, Austin Oncol 2016

Case Report

### Mortality due to immunotherapy related hepatitis

Bhave, J Hepatol 2018

### Fulminant hepatitis related death:

- on Vigilyze-Vigibase, the World Health Organization pharmacovigilance database (31.059 treated patients) : 0.4%
- In a multicenter study (3545 treated patients) : **0.14%**

Wang, JAMA Oncology 2018

### **Fulminant Hepatitis Treated with Plasma Exchange**

- 76-year-old patient with an ovarian cancer → grade 2 hepatitis on Nivolumab improved by corticosteroids.
- Introduction of Ipilimumab due to cancer progression → no response to 2mg/kg/day of steroids + 1.5 g/day of MMF.

• Development of fulminant hepatitis.

• Resolution with **plasma exchange**.

— Prothrombin time (%) — Total bilirubin (mg/dL)



**Riveiro-Barcela, J Hepatol 2018** 

### **Corticosteroid-Resistant Liver Toxicity**

- 60 year-old patient with metastatic melanoma treated with ipilimumab, developed a grade 3 hepatitis
- After a first improvement with corticosteroids, he relapsed

He was successfully treated with the add of MMF and Antithymocyte globulin



Chmiel, J of Clinical Oncol 2011

### Liver Toxicity Treated with Triple Immunosuppression

- 50 year-old patient with metastatic melanoma treated with ipilimumab, developed a grade 3 hepatitis
- She was started on 2mg/kg/day of **methylprednisolone** without improvement
- MMF and Antithymocyte globulin were added with hepatitis resolution

| Table 2Liver function     | tests and absolute  | lymphocyte o   | count during treatr | nent                             |                                |               |     |     |
|---------------------------|---------------------|----------------|---------------------|----------------------------------|--------------------------------|---------------|-----|-----|
| Test                      | Normal range        | D0<br>Baseline | D1<br>MEP 1st dose  | D2 MEP 2nd and<br>ATGAM 1st dose | D3 MEP 3rd and<br>ATG 2nd dose | D4<br>MEP 4th | D15 | D30 |
| ALT                       | <34 U/L             | 19             | 640                 | 4700                             | 1460                           | 1520          | 40  | 20  |
| AST                       | <31 U/L             | 16             | 936                 | 7280                             | 265                            | 205           | 35  | 18  |
| GGT                       | <38 U/L             | 29             | 186                 | 244                              | 174                            | 181           | 30  | 25  |
| ALP                       | 42–98 U/L           | 91             | 366                 | 604                              | 326                            | 304           | 89  | 76  |
| Bilirubin (total)         | <20 μmol/L          | 11             | 15                  | 30                               | 12                             | 12            | 11  | 9   |
| Absolute lymphocyte count | 1–4×10 <sup>9</sup> | 1.47           | 1.08                | 0.86                             | 0.07                           | 0.08          | 1.1 | 2.2 |

ALP, alkaline phosphatase; (ATGAM) Horse anti thymocytic globulin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyl transferase; MEP, methylprednisolone.

#### Ahmed, BMJ Case Rep 2015

### **HCV Reactivation during Immune Checkpoint Inhibitors ?**

| Study                 | Type of                                                          | N of patient | Immunotherapy                                         | Viral load                 | Evolution                                                                                                                          |
|-----------------------|------------------------------------------------------------------|--------------|-------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                       | study                                                            | _            |                                                       | before therapy             |                                                                                                                                    |
| Minter (2013)         | Case report                                                      | 1            | Anti-CTLA-4                                           | Positive                   | Reduction of viral<br>load with a slight<br>increase after<br>therapy<br>discontinuation                                           |
| Sangro<br>(2013)      | Multicenter<br>open-lable<br>phase 1b trial                      | 21           | Anti-CTLA-4                                           | Positive                   | Reduction of viral<br>load                                                                                                         |
| Ravi (2014)           | Case series                                                      | 4            | Anti-CTLA-4                                           | Positive                   | Reduction of viral load for 2 patients.                                                                                            |
|                       |                                                                  |              |                                                       |                            | stabilization in 1<br>patient and<br>possible drug-<br>induced hepatitis<br>in 1 patient which<br>improved with<br>corticosteroids |
| Davar (2015)          | Case report                                                      | 2            | Anti-PD1<br>(1 patient)<br>Anti-CTLA-4<br>(1 patient) | Positive                   | Both patients with<br>HCV<br>monoinfection and<br>HCV/HIV                                                                          |
|                       |                                                                  |              |                                                       |                            | coinfection =<br>stability of viral<br>load and liver tests.                                                                       |
| El-Khoueiry<br>(2017) | Multicenter<br>open-label<br>phase 1-2                           | 50           | Anti-PD1                                              | Positive                   | Transient reduction<br>of viral load                                                                                               |
| Duffy (2017)          | study                                                            | 16           | Anti-CTLA4                                            | Positive in 14<br>patients | Reduction of viral<br>load in most of the<br>patients                                                                              |
| Zhu (2018)            | Multicenter<br>non-<br>randomized<br>open-label<br>phase 2 trial | 26           | Anti-PD1                                              | Positive                   | No flares                                                                                                                          |

Viral load reduction

### **HBV Flares during Immune Checkpoint Inhibitors ?**

| Study                 | Type of<br>study                                                 | N of patient                                      | Immunotherapy                           | Viral load<br>before therapy                                                              | Evolution                                                                                                                                   |
|-----------------------|------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| HBV                   | -                                                                |                                                   |                                         |                                                                                           |                                                                                                                                             |
| Ravi (2014)           | Case series                                                      | 5                                                 | Anti-CTLA-4                             | Negative in 2<br>patients and<br>positive but on<br>antiviral<br>therapy in 3<br>patients | No reactivation<br>or increase of<br>viral load or liver<br>tests                                                                           |
| Lake (2017)           | Case report                                                      | 1                                                 | Anti-PD-1                               | negative                                                                                  | Reactivation on<br>immunotherapy<br>Resolution on<br>tenofovir                                                                              |
| Koksal<br>(2017)      | Case report                                                      | 1                                                 | Anti-CTLA-4<br>followed by<br>Anti-PD-1 | HBsAg+<br>HBV-DNA not<br>known                                                            | Reactivation on<br>immunotherapy<br>Resolution on<br>tenofovir                                                                              |
| El-Khoueiry<br>(2017) | Multicenter<br>open-label<br>phase 1-2<br>trial                  | 15<br>(dose escalation)<br>51<br>(dose expansion) | Anti-PD1                                | < 100 IU/mL                                                                               | Patients were on<br>antiviral therapy.<br>No reactivation<br>and no AcHbs<br>seroconversion                                                 |
| Duffy (2017)          | Single center<br>prospective<br>study                            | 5                                                 | Anti-CTLA-4                             | 4 patients =<br>negative<br>1 patient =<br>positive                                       | 4 patients were<br>on antiviral<br>therapy and had<br>no reactivation;<br>1 patient without<br>therapy showed<br>reduction in viral<br>load |
| Zhu (2018)            | Multicenter<br>non-<br>randomized<br>open-label<br>phase 2 trial | 22                                                | Anti-PD1                                | < 100 IU/mL                                                                               | Patients were on<br>antiviral therapy.<br>No reactivation                                                                                   |

- Most of the patients on antiviral therapy
- 2 case reports of reactivation

### Possibility of HBV Reactivation in HBsAg +ve patients on Immunotherapy

| Events                                | No. (%) of patients |                                                     |                                                  | Difference between | OR (95% CI)         | Р                  |
|---------------------------------------|---------------------|-----------------------------------------------------|--------------------------------------------------|--------------------|---------------------|--------------------|
|                                       | Total (n = 114)     | Patients without antiviral prophylaxis ( $n = 29$ ) | Patients with antiviral prophylaxis ( $n = 85$ ) | groups, % (95% Cl) |                     | value <sup>a</sup> |
| Hepatitis                             |                     |                                                     |                                                  |                    |                     |                    |
| All grades                            | 35 (30.7)           | 8 (27.6)                                            | 27 (31.8)                                        | 4.2 (-16.01-20.83) | 0.82 (0.32–2.08)    | 0.674              |
| Grade 3/4                             | 10 (8.8)            | 4 (13.8)                                            | 6 (7.1)                                          | 6.7 (-4.50-23.89)  | 2.10 (0.55–8.07)    | 0.467              |
| HBV reactivation                      | 6 (5.3)             | 5 (17.2)                                            | 1 (1.2)                                          | 16.0 (5.05–33.33)  | 17.50 (1.95–157.07) | 0.004              |
| HBV-related hepatitis                 | 5 (4.4)             | 4 (13.8)                                            | 1 (1.2)                                          | 12.6 (2.80–29.40)  | 13.44 (1.44–152.79) | 0.019              |
| Immunotherapy disruption <sup>b</sup> | 11 (9.6)            | 4 (13.8)                                            | 7 (8.2)                                          | 5.6 (-5.78-22.88)  | 1.78 (0.48–6.60)    | 0.609              |
|                                       |                     |                                                     |                                                  |                    |                     |                    |

| Table 3 Efficacy | of antiviral | prophylaxis ir | n HBsAg-positive | patients |
|------------------|--------------|----------------|------------------|----------|
|------------------|--------------|----------------|------------------|----------|

Table 2 Details of the 6 Patients with HBV reactivation

| Patients Characteristics |                | Baseline |                        |                       | At reactivation    |                          |                                         |                        |                   |                                       |                                |                                                       |                                  |
|--------------------------|----------------|----------|------------------------|-----------------------|--------------------|--------------------------|-----------------------------------------|------------------------|-------------------|---------------------------------------|--------------------------------|-------------------------------------------------------|----------------------------------|
| Patient                  | Age<br>(years) | Gender   | Cancer<br>type         | Anti-tumor<br>therapy | HBV DNA<br>(IU/mL) | Antiviral<br>prophylaxis | Weeks from<br>start of<br>immunotherapy | HBV<br>DNA (IU/mL)     | Peak<br>ALT (U/L) | Anti-PD-1/PD-L1<br>therapy disruption | Antiviral<br>treatment         | Time for achieving<br>HBV-DNA undetectable<br>(weeks) | Time for ALT<br>recovery (weeks) |
| 1                        | 48             | м        | NPC                    | Camrelizumab          | Undetectable       | Nil                      | 3                                       | $7.81 \times 10^{3}$   | 191.4             | Delayed                               | Entecavir                      | 1                                                     | 2                                |
| 2                        | 47             | м        | NPC                    | Camrelizumab          | Undetectable       | Nil                      | 16                                      | $6.98 \times 10^{4}$   | 203.0             | Delayed                               | Entecavir                      | 4                                                     | 4                                |
| 3                        | 39             | м        | Melanoma               | Pembrolizumab         | Undetectable       | Nil                      | 28                                      | $2.10 \times 10^{3}$   | 27.6              | No                                    | Nil                            | 5                                                     | NA                               |
| 4                        | 36             | М        | HCC                    | Nivolumab             | Undetectable       | Entecavir                | 12                                      | 1.80 × 10 <sup>3</sup> | 298               | Discontinued                          | Entecavir<br>plus<br>tenofovir | 1                                                     | 3                                |
| 5                        | 45             | м        | HNSCC                  | Toripalimab           | Undetectable       | Nil                      | 35                                      | $4.04 \times 10^{6}$   | 281.2             | Delay                                 | Entecavir                      | 3                                                     | 6                                |
| 6 <sup>a</sup>           | 41             | F        | Soft Tissue<br>Sarcoma | Nivolumab             | Undetectable       | Nil                      | 20                                      | 6.00 × 10 <sup>7</sup> | 465.1             | NA                                    | Entecavir                      | 8                                                     | 4                                |

<sup>a</sup>HBV reactivation in this patient occurred 6 weeks after immunotherapy was discontinued; other HBV reactivation occurred during anti-PD-1/PD-L1 thearpy

Abbreviations: M male, F female, HBV hepatitis B virus, NPC nasopharyngeal carcinoma, HCC hepatocellular carcinoma, HNSCC head and neck squamous cell cancer, ALT alanine aminotransferase, NA not applicable

### X Zhang J Immunotherapy Cancer 2019

Reintroduction of a checkpoint inhibitor ?

### Re-introduction of Immunotherapy after Severe Hepatitis: Budesonide Prophylaxis

- 73-year-old patient with metastatic melanoma → grade
   3 hepatitis after 2 cycle of
   Nivolumab.
- No hepatitis recurrence after immunotherapy reintroduction on budesonide prophylaxis.

#### 400 ALT Methylprednisolone, starting dose 1 mg/kg body weight (72 mg/d), AST stopped at the time of restart nivolumab 350 GGT Ursodeoxycholic acid 2 x 500 mg 300 N-acetylcysteine 3 x 1200 mg (dose reduced to 3 x 600 mg on day 90) 250 Budesonide 3 x 3 mg (dose reduced to 2 x 3 mg on day 162) ٦L 200 ovic 150 100 50 0 14 28 30 35 38 50 53 56 66 69 73 83 90 105 119 133 147 161 175 189 203 41 44 45 46 49 Day

### Evolution of AST, ALT and GGT

#### Ziemer, J Hepatol 2016

### Safety of Resuming Anti-PD1 after IrAEs with Combination Therapy Anti-PD1 + Anti-CTLA4

- 80 patients treated with combination therapy.
- All discontinued immunotherapy due to irAEs, 29 (36%) for hepatitis, 19 (24%) grade 3 or 4.
- All patients resumed anti-PD1 therapy and 50% experienced a toxicity.
- 5 (17%) patients had hepatitis recurrence.

### Percentage of patients with toxicities with combination therapy and after resuming anti-PD1



#### Pollack, Ann Oncol 2018

### Safety of Resuming Anti-PD1 or Anti-PD-L1 after IrAEs



3/5 (60%) patients developed an hepatitis after the rechallenge  $\rightarrow$  irAEs is not systematic

Simonaggio, JAMA Oncol 2019

# **Rechallenge after ICI-Liver Toxicity**

#### Table 3. Re-challenge with ICIs after resolved immune-mediated hepatitis.

| Study                 | Patients retreated<br>with ICI after liver<br>toxicity | ICI first therapy                             | Grade of<br>first liver<br>toxicity<br>≥3 | ICI re-challenge         | Time between toxicity<br>and reintroduction<br>Days (median, range) | Liver toxicity<br>recurrence | Other<br>irAEs |
|-----------------------|--------------------------------------------------------|-----------------------------------------------|-------------------------------------------|--------------------------|---------------------------------------------------------------------|------------------------------|----------------|
| Ziemer 2016           | 2                                                      | Anti-PD-1                                     | 2                                         | Anti-PD-1                | 103 and 38                                                          | 0                            | 0              |
| Spankuch 2017         | 1                                                      | Anti-CTLA-4 + anti-PD-1                       | 1                                         | Anti-PD-1                | n.a.                                                                | 0                            | 0              |
| Spain 2017            | 2                                                      | Anti-CTLA-4 + anti-PD-1                       | 2                                         | Anti-CTLA-4 + anti-PD-1  | n.a.                                                                | 1 (grade 4)                  | 1              |
| Pollack 2018          | 29                                                     | Anti-CTLA-4 + anti-PD-1                       | 19                                        | Anti-PD-1                | 58 (14-395)                                                         | 5                            | n.a.           |
| De Martin 2018        | 3                                                      | Anti-CTLA-4 + anti-PD-1                       | 3                                         | Anti-PD-1                | n.a.                                                                | 1                            | 0              |
| Gauci 2018            | 5                                                      | Anti-CTLA4 or Anti-PD-1                       | NA                                        | Anti-CTLA-4 or Anti-PD-1 | n.a.                                                                | 0                            | 0              |
| Riveiro-Barciela 2019 | 1                                                      | Anti-PD-1                                     | 0                                         | Anti-CTLA-4              | n.a.                                                                | 1 (grade 4)                  | 0              |
| Simonaggio 2019       | 5                                                      |                                               |                                           | Anti-PD-1 or Anti-PDL-1  |                                                                     | 3                            | 0              |
| Cheung 2019           | 4                                                      | Anti-CTLA-4 + anti-PD-1                       | 2                                         | Anti-PD-1                | n.a.                                                                | 0                            | 0              |
| Riveiro-Barciela 2020 | 6                                                      | Anti-PD-1 or Anti-PD-L1<br>or Anti-CTLA-4 (2) | 0                                         | Anti-PD-1                | n.a.                                                                | 0                            | 0              |
| Total                 | 58                                                     |                                               | 29 (50%)                                  |                          |                                                                     | 11 (19%)                     |                |

### De Martin J Hep Reports 2021

### Conclusion

- Hepatic irAEs are characterized by an extreme variability.
- In patients with immune-mediated hepatitis liver biopsy helps to confirm the diagnosis and to evaluate the severity of liver injury.
- Corticosteroid therapy should not be given systematically, even for grade 3-4 toxicity, but according to the biological and histological severity of hepatitis.
- In patients who experience immune-mediated hepatitis, immunotherapy reintroduction is possible with risk since predictive factors for hepatitis recurrence or immune toxicity of another organ are lacking.
- Specific aspects such as viral coinfection and baseline liver function should be taken into account

# Multidisciplinary approach



Oncologist, Immunologist, Pharmacologist, Organ specialists..

### Acknowledgments



### FACULTÉ DE MÉDECINE





### Centre Hépato-Biliaire Paul Brousse

### Institut Gustave Roussy